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Abstract
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1 Introduction

This paper is concerned with an efficient algorithm for geometric object recognition from

visual data. We will study geometric recognition under under a bounded error model:

assume we are given a set of image points 8 (say, in IR2) and a set of model points J4

(say, in IR3); determine whether there exists a viewing transformation T that will map

each model point to within a distance ! of an image point. A more general version of this

problem is to determine the size of the largest subsets of image and model points that can

be brought into correspondence and the transformation that does this. This is illustrated

in Figure 1.

There are several reasons why bounded error models are interesting formalizations of

geometric recognition and estimation problems. Often, bounded error models answer

statistical questions more directly than other statistical methods-in many aplications.

we are only concerned with the question whether some particular value does not deviate

from a true value by more than some given bound; the exact distribution of the error

within those bounds is of no concern. Bounded error models also tend to be more robust

and easier to apply than estimation techniques based on more specific models of error.

Finally, bounded error models allow us to carry out a formal analysis of the computational

complexity of recognition algorithms; such an analysis can give us important clues about

the complexity and behavior of other recognition algorithms, such as those based on least

square methods or alignment.

Bounded error models have received considerable attention in recent years. Their study

in visual recognition (e.g., Grimson and Lozano-Perez, 1983, Baird, 1985, Breuel, 1989,

Breuel, 1990, Cass, 1990) has been preceded by bounded error models in control (see

Norton, 1986, for an introduction), which ultimately culminated in the development of

a polynomial time algorithm for the linear programming problem Khachian, 1979 (see

Papadimitriou and Steiglitz, 1982, for a simple introduction).

Baird, 1985, has analyzed the the problem of 2D visual object recognition under a bounded

error model. He showed that determining a transformation given a 1-1 correspondence

(matching) between a subset of image points and a subset of model points subject to

convex polygonal error bounds can be solved efficiently by using a linear programming

algorithm. He then used a simple depth-first search algorithm to search for the maximal

1-1 correspondence and gave an average case analysis of the complexity of the search for

random point patterns in the absence of spurious data or occlusions and assuming that a

match actually exists. His algorithm empirically performs well even if a few model features

are missing from the image and a few spurious features have been added to the image, but

he could not bound the worst case running time of the algorithm with a polynomial. The

chief advantage of his search technique is, however, that it exteuds in a straightforward



manner to higher dimensions. The search technfique proposed by Grimson and Lozano-
Perez, 1983. is similar to Baird's method: they have proposed pruning heuristic., hAt
improve the performance of their search algorithm in practice. But such heuristics have
not vielded a provably polynomial time recognition algorithm (Grimson. 1988. Cr1imson.
19S9).

Cass. 1990. has used a different approach to the same problem. He obseives that the space
of transformations is partitioned into a polynomial number of cells by correspondences
between model and image features. The search for maximal 1-I correspondences can then
be restricted to examining the boundaries of these cells of transformation space. By using
some additional constraints. Cass reduces the problem to a ID problem. which means
that the boundaries separating the cells are a (provably small) set of discrete points. This
-topological" method has the advantage that it is easily demonstrated to require only a
polynomial number of arithmetic operations in the 2D case. Cass' method is essentially
a sweep of transformation space' (e.g., Edeisbrunner, 1987).

A very important contribution of Baird. 1985, was the use of a representation of transfor-
mations that ensured that linear constraints on the location of image features gave rise
to linear constraints on the set of feasible transformations. Baird's linear representation
lets us apply linear programming methods to the verification problem.

Based on this correspondence between linear constraints on location and halfspaces (linear
constraints) in transformation space. the existence of a polynomial time algorithm for
a wide class of recognition problems is easy to see: the linear constraints on feature
locations will give rise to a partition of transformation space into a polynomial number
of cells. Standard algorithms from computational geometry can be used for enumerating
these cells. Each individual cell will correspond to a number of geometrically equivalent
matchings between image and model points that can be determined by explicitly applying
one of the transformations in the cell to the model and comparing the result with the
image.

The performance of transformation space sweep algorithms in the average case is. however.
disappointing: many cells enumerated by the transformation space sweep correspond
only to small matchings. In practice. correspondence search algorithms can perform
significantly better. even though the worst case complexity of previous correspondence
search algorithms is provably exponential. The empirical efficiency of correspondence
search algorithms is a consequence of the fact that they can use geometric constraints to
eliminate most of the smaller geometrically inconsistent matchings.

-IhisS paper first describes the pruned correspondence search (PCS) algorithm, an algo-

":40,,,6i1at simnlar in spirit to m.s. 990, but inore restricted in scope. is the result of Alt 0 zl.. 1988.
which applies only to the problem of proving the existence of a bounded matching between two sets of
points under uniform, circular error homids
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Figure 1: A formalization of the recognition problem with bounded error: Find the largest
subset of points m, on the left such that there exists a transformation T (translation.

*~h rotation. scale)" of the plane that maps the points into the error bounds B1 -- b, + E t
lw, given by image points 61 together with error bounds given as sets Ej on the right.

rithm that combines the advantages of worst case polynomial time complexity with the
good average case behavior of previous correspondence algorithms. The PCS algorithm
consists of a polynomial time transformation of a verification algorithm into a recognition
algorithm. The central idea underlying the PCS algorithm is that rcgions of transforma-
tion space that have already been explored can be represented efficiently and concisely
using a list of pairings between image and model points.

[n the second part, the paper describes how to apply the PCS algorithm to the problem
of 2D and 3D model based recognition. In order to do so, we extend the linear formula-
tion introduced by Baird to the non-linear problem of verifying 3D objects in 2D images
under rigid transformations. Then, worst case and average case complexities for the al-
gorithm applied to the problems of 2D and 3D recognition from 2D images are derived.
It is also discussed how the PCS algorithm can be integrated into any existing correspon-
dence search based algorithm with little additional overhead, taking advantage of existing
heuristic methods while guaranteeing worst case p~olynomial time complexity even inl the
presence of large error bound., clutter, and occlusions.

S0-
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2 The Algorithm

Let us begin by stating the formal problem that the algorithm presented in this paper

qolves (following closely the definitions in Baird. 1985):

Definition 1 Given a set of image points 3 = {b .  bk}. a -set of model points

A = {ml..... mj,} a set of error bounds £ = {E 1,.. .. Ek} and a set of permissible

transformations T. a MATCHING 2 consists of two subsets 81" C 8 and ."" C k4. and a

permutation p. A matching is FEASIBLE if there exists some transformation T -- T such

that3 T bi Em n(,) + E,. for all bi E 6.

The SIZE of a matching y (written as size(,u)) is the size of 13 (or. equivalentlg. kUIl).

.4 matching can be viewed as a collection of PAIRINGS or CORRESPONDENCES. where a

pairing is a pair consisting of an image point and a set from the collection of model sets:

in different words. a pairing is an element of x 4.

Sometimes we will call a pairing a CONSTRAINT if we think of it as restricting the .set of

compatible transformations T.

Definition 2 The problem of verifying a bounded matching (VBM) is to determine

whether. given a matching, there exists a transformation compatible with that matching.

Definition 3 The *IAXIMAL BOUNDED MATCHING (MBM) problem is to find a feasible

matching such that no other feasible matching is larger.

In the definition of MBM, it is sufficient to exhibit any one of these maximal matchings, as

long as no other matching is larger. More generally, we might wish the algorithm to return

a concise description of all maximal matchings; the algorithm presented in this paper is

capable of doing this. In fact, the algorithm will return a small set of representative

maximal matchings. which could be used to reconstruct each possible maximal matchings

efficiently.

An alternative definition places the error bounds on the model points. We will return

briefly to this distinction later; for the time being it is irrelevant, since we only need to

make the following assumptions about the bounded matching problom at hand.

'2Thp definition of a "matching- follows Baird, 1985: it is not identical to the definition of a inatch-
ing in graph theory. There are several terminologies in common use for talking ahout corr, spondence
based recogr'tion algorithms. In this paper, we will use the term "correspondence" when discussing
classes of algorithms, and refer to individual correspondences as -pairings" and ,ets of correspondences
as 'matchings".

3The notation v + E. where v is a vector and E is a set, refers to the set t + E = E " E}.

5g
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Ve assume that there is a polynomial time algorithm, say. VBIE VERIFI'ATION of a

BOUNDED MATCHING with EXCLUSION), that, given two sets of pairings P = p, ..... p,}
and .4 = {al ..... , } (as in Definition 1). can determine whether there exists a transfor-
mation T that is consistent with all the pairings in P and consistent with none of the
pairings in .4. For example. in the case of convex polygonal error bomilds on 2D points.
this can be done using linear programming, as we will see. Note that VBME may. in
general. be a harder problem than VBM: for example, if the constraints imposed by a
pairing on the sot of feasible transformations are convex, VBM has to determine whether
the intersection of a number of convex sets is empty, wherea3 VBME has to determine
whether the intersection of a number of convex sets with one non-convex set is non-empty.

The combinatorial constraint that correspondence based algorithms rely on is the obser-
vation that if some matching P is infeasible (geometrically inconsistent), no matching
P' D P can be feasible. A natural approach to finding a maximal matching is therefore
a depth first search: we start with an empty matching, and add pairings to it until the
current matching becomes infeasible. We call a matching to which no other pairing can be
added without making it infeasible a LEAF. The set of all leaves forms a set of candidates
for maximal matchings.

.Just terminating the search when a matching has become infeasible is. however, insufficient
to guarantee polynomial time complexity of the search algorithm. The reason is that
geometrically equivalent matchings may be re-explored by the search algorithm a large
number of times. Consider the extreme example of matching n image points at the origin
against n model points at the origin: in this case, there exist n! different (as sets) maximal
matchings, and all of these will be explored as leaves by a simple correspondence search
algorithm.

However. knowing a single representative of this set of geometrically equivalent matchings
is sufficient to recover all the other matchings by alignment, as follows. Given the rep-
resentative matching it. we compute a transformation T consistent with it. We can then
use T to transform the model into the image and test whether any given other matching
P' is equivalent to p directly.

It is therefore sufficient to return only a single representative for a set of geometrically
equivalent matchings. From the above argument, we can also deduce what technique we
can use in order to make sure that we only compute one of the possibly exponentially many
equivalent matchings: all geometrically equivalent matchings correspond to the same set
of transformations between image and model space. If we can keep track during the search
of correspondence which regions of transformation space have already been explored, we
can avoid the exponential behavior of the simple correspondence search algorithms.

The crtcial idea presented in this paper is that the regions that hav( alr ady b xplorcd

by the search algorihm can b represented concisely and efficientlyl as anothlir set of

0
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pairings, the A\DJOINT PAIRINGS. By putting a pairing of a gir n image point icith , 1'r I

model point on the adjoint list. we ensure that no transformations that map the modil
point to writhin the given er-ror bounds of the imaye point will (er be recon.sideed bij the
algorithm. Thi.' fact i. the main motivation behind the PCS algorithm.

An algorithm based on these ideas is given in the Scheme programming language i 4

Figure 3. The algorithm is implemented by the function all-representatives. This
function generates a list of candidates which can then be tested for maximalitv later.
The function all-representatives takes as arguments a function vbme implementing
the verification with exclusion algorithm and a list of all possible pairings. The function

complement complements a list of pairings with respect to the list of all pairings pairings.
Other functions will be explained in the proof of the correctness and pciynomiad time
complexity of the algorithm. The pruning method used by the algorithm is illustrated
schematically in Figure 2.

The pruning step based on the adjoint list of pairings is relatively low cost. and it can
oniy reduce the number of nodes expanded during the search. It turns out that under
weak assumptions, this pruning step is actually sufficient to guarantee polynomial time

behavior of a correspondence search algorithm. Below, we will present a proof of this fact
based on the geometrical view of transformation space described in. for example. Grimson
and Huttenlocher. 1989. and Cass, 1990. which makes it easy to relate the results about
the complexity of the PCS algorithm to transformation space based methods 5 (sweeps
and sampling methods).

Consider a pairing between a model point mi, an image point b,. and a set E, specifying
the error bounds. Corresponding to this choice is a set of transformations T, = {T :
Tm, E bj + E3}, i.e., the set of transformations that will map the image point to within
the error bound of a prototype model'.

The set £ of all intersections and unions of the Tj forms a lattice under inclusion. The
set of lower bounds of £ - {1} form a PARTITION P of transformation space . We will
refer to the individual elements of "P as CELLS. A REPRESENTATIVE for a cell is a set of

'See Rees and Clinger, 1986, for a description of the Scheme programming language. The functions
remove-if-not and some are defined like their Common Lisp counterparts. The functions pairing-from
and pairing-to return some unique label for the image or model point, respectively, that constitute the
pairing.

5An alternative proof of the polynomial time complexity of the PCS algorithm based on image space
is possible and yields sharper worst case complexity bounds for important special cases of recognit':on
tinder the bounded error model.

';,fo avoid discussion of some unimportant special cases, we will assume that differnt pairings .-ive
rise to noI-identical constraints in transformation space: i.e., i : i' V J j' > 'T, 7: T,,.

7Witlhut loss of generality, we assume that T = Uij '7. The elements of this partition ;re timmIons of
the -lenivnts of the arrangement (see Edelsbrunner. 1987) generated by the hyperplanes contaning tie
faces- of the convex polyhedra in transformation space.

7O



pairings P such that the set of transformations compatible with all the pairings in P is

just the transformations in the cell.

For example, in the case studied by Baird, the individual constraints correspond to half-
spaces in transformation space; each Ti consists of the intersection of a number of such

halfspaces (i.e., is itself a convex polyhedron in transformation space). In the case studied
by Cass, each Tj can be represented by a generalized cylindrical shape in8 IR2 X C1.

In general, the size of P (i.e., #P) could be expnnential in the number of image and model
features. However, for many classes of transf,,mations and image/model spaces, # P is

only polynomial in size. We will examine conditions for this later; in the case of linear
constraints (convex polygonal error bounds). P is composed of unions of elements of the

arrangement of hyperplanes corresponding to the linear constraints on feature locations.

We need some additional notation for the proof. Imagine that there exists a function

consistent(T, P) that returns true iff the transformation T is consistent with every pairing

p E P. P, Q, R will refer to sets of pairings (some matching), and A, B, C refer to sets

of adjoint pairings, i.e., represent regions of transformation space excluded from further

search. Assume that all possible pairings are numbered and listthem as {ql,..., qn}. Also,

we introduce the following abbreviations for certain subsets of transformation space:

Definition 4

T(P) = IT :Vp.E P : consistent(T. {p})}

T(P, A) = {T: Vp E P: consistent(T, {p}),Va E A : -consistent(T, {a})}

V'= T({pi},Ipi,...,p1 -d) where P =p,,...,pi

Now, let us examine the algorithm in more detail (refer to Figure 3). In the discussion of

the algorithm, we will have to refer to functions in the Scheme code; typewriter font and

standard mathematical notation will be used in such cases: e.g.. the Scheme call (leaf

p) will be written as leaf(P) in proofs.

Let us first consider some simple lemmas:

Lemma 1 The sets T(P,A) and Vt, where P = {pl,... ,p,} are given by:
i-I

T(P,A) = n T- u T and 'D = T(p,) - U T(p)
pPP qE.4 j= I

Proof. Follows directly from the definition. C

8C" is the circle.
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Mod*2Nod*3Nod*4

qiq q2

,ql q 1

Figure 2: This figure illustrates schematically how the search tree for a maximal matching
is pruned. The polygon indicates th- r din in transformation space that is compaLible
with the set of pairings P, at Node I and not excluded by the adjoint constraints .41 at
the same node.
The region of transformation space that a particular node is responsible for exploring is shown
in dark grey. Node 2 is responsible for exploring the region where all constraints in P, u {qj}
are satisfied. Node 3 does not need to explore this region anymore: therefore. q, has heen added
to the adjoint constraints whe. Node 3 is expanded.
The search tree starting at Node 4 can be pruned in this example. because all the matchings
containing q3 will already have been explored by nodes 2 and 3. Notice that this is a geometrical
fact. not a combinatorial fact-if q3 had been a little higher so that it included some of rite
unexplored-white-region, this branch coilt int have beon pruned from the search tree.

0



(define (all-representatives vbme pairings)

;; all the elements in "pairings" that are not in "x"
(define (complement x)
(remove-if-not (lambda (y) (not (membei y p))) pairings))

return a list of the form
;; (((ql.P) A) ((q2.P) (ql.A)) ((q3.P) (qi q2.A)) ...

(define (successors p a)
(define (successorsl q)

(if (null q) '()
(cons (list (cons (car q) p) (append (cdr q) a))

(successorsi (cdr q)))))

(remove-it-not (lambda (x) (apply vmbe x))
(successosl (complement x))))

;; det-rmine whether "p" is a feasible matching and has no successors

(dei.ne (leaf p)
(and (vbme p '0)

(not (some (lambda (x) (vbme (cons x p) '0)) pairings))))

recursively compute representatives for all leaves
that are candidates for being waximal matchings

(define (representatives p a)

(if (leaf p) (list p)

(reduce append
(map (lambda (x) (apply representativesl x))

(successors p a)))))

(representatives '() '0))

Figure 3: The pruned search aigorithm. See the text for an explanation.

0



The idea is that the '' partition the part of transformnation space that is of intrs
at any particular node during the search, and that these sets can be represented in the
algorithm concisely and efficiently by a pairing p, and a list of ad joint pairings p1 .

(in the algorithmi itself. this is a pair consisting of two lists. ((P,) (pi p... ,) ). WAe

ill therefore refer to calling represent at ives(P. A) as calling representatives -on
the set- represented by the transformations compatible with the pairings P and adjoint

pairings A

Now. some more trivial lemmas:

Lemma 2 The- 4ets'Dr partition the space of transfrirmatons (aCCe8Sible fromn the pairings
i n P = {Pj. p,:

UTI-(p 1 =U Dr i~=> ~fDP n' {
z A

represent at ives( P. A) returns only leaves:

VQ E represent at ives (P, A) :leaf (Q) = true

A leaf cannot be divided further by another pairing, a leaf is Just a representation. in terms
of a largest qet of pairings. of a cell of the partition P of transformation space induced by
the individual pairings:

(leaf (P) =true) A(T(P 1)) n , #- ) =>T(P.{n)f , = T(P. 0)

Proof. Left to the reader. 0

Lemma 3

{T(P) : P E representatives({}1, 11)) = {T(Q) : leaf(Q)}

Proof. What we are trying to show here is that representatives will return a represen-
tative for every leaf in transformation space9 .

Since representatives only returns leaves. "~C" has been established.

To prove "D" we will demonstrate that if leaf (Q) is true and T(Q. A) g T(P.A.) then
represent at ives( P. A) will return a list containing a representative of T(Q). This will
prove, in particular. that representatives({} , 1)) must return all P. as required, since
the empty set of pairings and the empty set of acijoint constraints correspond t~o all of
ransformation space.

It' P Is itself a leaf. then T( P) = T(Q) and we are done.

s-he tatenien. of the lemnma uses the cell T(P) in tran.4orniatioii space to einphasize that the
representation of the matchings P and Q as sets or lists of pairings doe~s not. affect the result.



p
Otherwise. consider the set R = {, I. . . . . } of successbr pairings at a search node. If
we use no pruning. the search at this point would explore the intersection 'T' of the set
of currently feasibie transformations T(P. 4) with the set of transformations that are
accessible by the pairings in R. But the sets D. = 7' n D' form a partition of the set T'.
by Lemma 2. Thus. there must be a DP. such that T(Q) g D'. But representatives will
be called recursively on every one of the sets D', represented by the pair of lists ((r,.P)
(r1 "" r,-,.A)) and returned by the function successors: representatives returns
the union of the result. By induction, we know that representatives will return a list
containing some representative Q' such that T(Q) = T(Q') when called on the set D'. El

Lemma 4

VQ1,Q 2 E representatives(P.A4) T(Q) n 7(Q 2 )= {1

Proof. If P is a leaf, representatives can only return the one element list (P). Oth-
erwise, representatives will call itself recursively on the disjoint sets Dk n T(P. .4).
But for every Q E representat ives(P, A), T(Q) _ T(P, A). Therefore. invocations
of representatives on disjoint sets can never return representatives Q1. Q2 such that
T(Q) n 7T(Q) # I}. n

Lemma 5 If P and Q are both leaves and representa.'ves for the same cell in P, then P
and Q contain the sarne pairings, and have the same size.

Proof. Assume the lemma is false, and that there exists some pairing q that is in Q but
not in P. But since the cell in transformation space that represents both P and Q is not
divided any further. q must be consistent with all the pairings in P. This means that we
could add q to P. This is in contradiction to the assumption that P is a leaf. 0

Lemma 6 The unpined depth-first search tree will return every matching Q such that
leaf(Q) is true.

Proof. ("Unpruned" here refers to the version of the algorithm that leaves the adjoint
constraints empty at all times.) This statement is essentially equivalent to the correctness
of the algorithm described in Baird, 1985. 0

Theorem 1 If 'oni.strai.s partition transformation space into a polynonial number of
cells and the function vbme runs in polynomial time. then all-representatives runs in
polynomial tiM,.

12



Proof Let L be the list returned by representatives. Elements of L correspond to dis-
joint cells of transformation space (Lemma 4): therefore length(L) must be smaller than
the total number of cells in P. which is polynomial in the problem size. by assumption.
But every leaf iM the search tree contributes an element to L. Therefore. the width of the
search tree must be polynomial. It is obvious that the depth of the search tree can be at
most length(pairings). The computation at each node in the search tree also requires
only polynomial time.

The correctness of the algorithm, i.e., the fact that it returns representatives for all the
cells for which an unpruned depth first search tree would have returned a representative.
has been established in Lemmas 3. .5. and 6. 13

The function all-representatives does not exactly solve the MBM problem itself.
though: the definition of MBM requires that any image or model feature is used
only once within a matching. but an element in the list of pairings returned by
all-representatives can contain several pairings that use the same image or model
point.

To see how we can satisfy these additional combinatorial constraints, we introduce some
adiLional concepts.

Lemma 7 Every feasible matching P is the subset of some representative Q returned by
all-representatives.

Proof. Because of Lemma .5, it suffices to show that every feasible matching is the subset
of some representative of any leaf. But this is trivial: either Q is itself a leaf. or we can
add some pairings to it to arrive at a leaf (since we only have a finite number of pairings
to add). 13

The combinatorial constraint that no image or model feature may be used twice in a
matching can be expressed as a maximal bipartite graph matching problem between image
and model features (see also Cass. 1988). Let P be a set of pairings. Let the two vertex
sets of the bipartite graph are given by the sets of image points in P and the set of model
points in P. and the edges are given by the pairings contained in P. A largest subset of
pairings that does not re-use any image or model points is a maximal bipartite matching
and can be computed from P in low-order polynomial time complexity (Papadimitriou
and Steiglitz, 1982).

Using these observations, we can state the following theorem.

Theorem 2 If constraints partition transformation space into a polynomial number of
cells

VBME E P #, MBNI E P

13
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Proof By Lemma 7. the optimal matching is a subset of one of the matchings returned by
all-representatives. We can run the maximal bipartite graph matching algorithm over
all the representatives returned by all-representatives to find the optimal matching
consistent with the combinatorial constraints. 0

imposing the combinatorial constraint of using each image or model feature only once is
rarely necessary in practice. and often undesirable. Other combinatorial constraints and
quality measures are of considerable practical interest, such as allowing multiple image
features to match a single object feature. or use model boundary length accounted for in
the image instead of the size of the matching. In fact. allowing multiple matches among
straight line segments gives us a simple method to deal with edge fragmentation and
partial occlusions of extended features.

The following, much simpler. theorem is also of some interest.

Theorem 3

MBM E P = VBM E P

Proof. MBM will return a maximal matching (our implementation actually can return
representatives for all maximal matchings). It turns out that we only need a simpler
algorithm MBM' that returns the size of a maximal matching: if P is compatible with
some transformation. then it is certainly necessary that .MBM'(B..M) returns k, where
B = {b + El.....bk + Ek} and .V = {ml,..., mk}, and that MBM'(6,.l,). obtained
by deleting bi from B and Mi from M. contains a matching of size k - 1. This condition
also turns out to be sufficient. n

3 Polyhedral Error Bounds

Let us now consider specific instances of the Maximal Bounded Matching (MBM) problem.

We will see that convex polygonal error bounds (linear constraints) on the position of
image or model points give rise to bounds that form a convex polyhedron in transformation
space for 2D rigid motions or higher dimensional affine transformations 0 .

Let A4 be a finite subset of IR ". Let the image points B and error hounds E = {Ei be
points and subsets of IR'v. respectively, where each subset E, is determined by a set of

'Baird. (985. gives a slightly different derivation of this fact for the 2D case and states the result in
the general case without proof. Essentially equivalent is the independent result of Ullman and Basri.
1989: they use the observation that the relation between constraints induced by correspondences and the
parameters of the viewing transformation is linear for testing for the consistency of several 2D images of
3D objects without explicitly computing a :;D transformation.

1
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linear constraints { (d,. U. ) } as follows:

E, = { t tiz,k (t' - m, ) dik} where L, k E IR'. d,k E IR

In different words. each image point with error bounds is a convex polyhedron (given by
the set bi + Ej) whose faces are determined by the (uik, d k). Let the set of transformations
T be the set of all transformations T = (t. R). where t is a translation (vector), and R is a
linear subspace of the space of N x AI matrices. Let K be the total number of constraints.
i.e.. the sum of the number of faces of each constraint polygon.

If we pair a point b from 6 with a point m from "' under the polyhedral error bounds
E. it is easy to see that this pairing implies a collection of linear constraints on the
matching transformation T. Let (iu, d) be the parameters determining one of the faces of
E. Requiring that T maps m into b + E is then the same as requiring (for all u and d)
that:

u. (Rm + t - b) < d

But we can rewrite this as:

d+ub > u.(Rm+t)
= ut+u. Rm
= Z + Z(u Z 1

Ek t k u Ri'
k I

= k kt k + Z(usmJR,,)
k

The last cxpression is formally like a dot product if we consider the vectors C(u. b) =
[(Ulk)= ..... V, ('b"),=i . ...... and P [(t')k= ... N,(Rj)i=i ...... v:j=i ...... ] elements of
an N + .VI dimensional vector space. Observe that the R form a linear vector space-a
subspace of IR'V"-themselves when considered elementwise. Thus. corresponding to the
linear constraint associated with the pairing (b, m)

u. (Rm + t - b) <d

is the linear constraint on T = (t, R) given by

C(u.b)- T <! d+ u.,n

This derivation goes through essentially unchanged if we impose error bounds on the
image points rather than the model points; it simply reverses the roles of 6 and ni. and
the last equation reads:

('(.nt) . < d + i.
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Sometimes we may also only have constraints on the orientation rather than the location of
a features. If we represent the orientation by a unit vector o. we observe that a constraint
on the orientation can also be written as a linear constraint on o as:

u. Ro < d

This can again be converted into a linear constraint on T = (t. R) since the inequality
can be considered a formal (lot product:

SOktk uoj R, K d
k1j

The algorithm VBME that we need in order to apply the search a!goritbm from the
previous section is now simply linear programming in an N + NI dimensional space
given K constraints (the total number of sides of all constraint polygons). We also see
immediately that the space of transformations is partitioned into at most O(K ' +N.1l)
cells through the application of all constraints.

Thus. we see that the pruned correspondence search (PCS) algorithm is a polynomial time
algorithm for the the Maximal Bounded Matching problem between points in 6 C. IR,
and M C IRA!. where

" the set of transformations is given by b =-t + Rm. t IRA!

" the R form a linear vector space

" constraints are given by polyhedra associated with each point either in B or A4

Essentially the same derivation goes through in the special case where we represent rota-
tions and scaling in the plane by complex numbers, yielding a polynomial time algorithm
for that case as well.

4 2D Recognition from 2D Images

It would be nice to be able to say more about the complexity of the recognition algorithm
in specific cases. We will need to make use of the following theorem:

Theorem 4 (Megiddo, 1984) For any.! fi.red dim rnsion. thF linear progmmming prob-
lemi is .solvable il linear tiyle.

This immediately lets us infer the following theorem:

16
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Figure 4: A matching problem. The edges of all the images were extracted from a
grey level image using an implementation of the Canny edge detector and approximated
by straight line segments using a splitting algorithm. Shown on the left are the edges
extracted a cluttered scene with 12 widgets, on the right, the edges of the model widget.
The recognition algorithm has to find the best match (in terms of model boundary length
accounted for in the image) to the object on the right, allowing for translations. rotations,
scaling, and occlusions. Model and image features were required to match within an error
of .5 pixels.

Theorem 5 Verification of a matching between a 2D image and a 2D model under affine
transformations or rigid transformations/scale. or a 2D image and a 3D model under
affine transformations and projection. can be carried out in O(n) time, where n is the
total number of points.

The problem VBME in the 2D case and in the 3D case with affine transformations is
linear in both the number of pairings in the matching to be verified and on the adjoint
list. VBM/VMBE in the 3D case with rigid transformations is slightly harder in the worst
case because of the need to intersect a quadratic surface with the polyhedron formed by
the feasible transformations in transformation space (see below).

In the following theorems, for simplicity let n be the maximum of #8 and #M. and
assitme that. there is a fixed maximum number of linear constraints associated with each
l1,,lel point. O

17
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Theorem 6 The ILorst case running time of the PC'S algorithm applied to the problem
of 2D recognition friom 2D irnage, under rigid transformation/scale is is 0(n ' 5 ).

The bound on the worst case running time follows from the fact that transformation space
is divided into at most O(n') cells by the individual constraints: there are 0(n 2 ) possible
pairings, and any k linear constraints partition the four dimensional transformation space
into at most O(k) cells11. Each linear programming problem is at most of size 0(n).
and the adjoint list is at most of size 0(n 2), giving a bound on the worst case running
time of 0(n"). The bipartite graph matching costs at most 0(n 2 "5 ), but we already have
counted in 0(n) time for the verification of each search node via linear programming. 0

This bound is very loose. First, the algorithm may actually only explore a fraction of
the cells in transformation space. Furthermore. both the linear programming algorithm
and the maximal bipartite matching algorithm can be interleaved with the search so that
partial results are taken advantage of at deeper levels: such techniques are already known
to reduce the overall coinplexiay of the algorithm further in 6ome cases (Baid. 1113.5).

Notice that any transformation space sweep algorithm that enumerates all cells for the
same problem has worst case and average case complexity of at least (n 9 ). since the
number of cells in the arrangement formed by the linear constraints on feature locations
has size f9(n') in the worst and average case, and the cost of picking a transformation
and computing a corresponding matching is Q(n).

In order to be able to say anything about the average case performance of the PCS
algorithm, observe that the adjoint-based pruning step in the PCS algorithm incurs at
most an additional overhead of 0(n l ) over any analogous correspondence based algorithm.
This observation lets us carry over average case analyses such as the ones found in Baird,
1985, Grimson, 1988, and Grimson, 1989, to the corresponding pruned algorithm.

5 3D Recognition from 2D Images

For the recognition of rigid 3D objects from 2D images, the restrictions on the matrices
R cannot be expressed in linear form anymore. The VBME algorithm now requires the
simultaneous solution of linear inequalities together with a set of quadratic equalities
whose number is independent of problem size. One approach is to embed the manifold
formed by all rotations and scaling matrices in a linear space. solve the verification problem
iii the larger space using linear programming. and then determine whether the intersection
between the manifold and the polyhedron containing the feasible transformations is non-

1TlFhis ract can he demonstrated either algebraically or inferred using the Vapnik Chervonenkis (VC)

,lilletl.'iO18
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Figure 5: The solution to the matching problem. The figure shows an optimal transforma-
tion of the model onto the image obtained using the PCS algorithm. Previous algorithms.
such as heuristic search termination or incompletely pruned algorithms, either did not
find the optimal solution, or could not be run to completion because of the combinatorial
explosion of the number of possible matchings.

empty. The cost of this intersection test is bounded by O(kd), where d is the dimension
of the space containing the rotations, and k is the number of linear constraints forming
the surface of the polyhedron. Although k can in principle be as large as n'. it can be
large only very rarely, and we will therefore assume that the cost of the intersection test
is constant in an amortized analysis.

Putting all these results together. we can bound the worst case complexity of the PCS
algorithm when applied to 3D recognition. Transformation space in this case is five di-
mensional (IR2 x R3. where IR2 is the two dimensional Euclidean space of translations. and
R3 is the three dimensional manifold of rotations), meaning that the O(n2 ) constraints
can give rise to at most O(n1 ° ) cells. Taking into account the O(n) cost for linear pro-
gramming, the O(n 2 ) cost for maintaining and testing the adjoint list, and the O(n 2

.
5 )

cost for the maximal bipartite graph matching this yields a bound of 0(n 4 '5 ) on the
worst case time complexity of the algorithm for :3D recognition from 2D data under rigid
transformations and convex polygonal error bounds. For the same reasons as in the 2D
cas.(, this is only a loose bound.

S
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In the average case. again, assuming constant time for the intersection test. the algorithm
will perform at most O(n2) worse than any existing correspondence algorithm. To see
what average case complexity this works out to in practice. consider the case of recognition
from 2D features with location and orientation. In the complete absence of error. we have
to consider 0(n") pairs of image and model features and solve a set of linear inequalities in
time 0(n) in order to find a maximal match'ng (this is simply the complexity of alignment
algorithms). The same considerations carry over to an average case analysis for sufficiently
small error bounds. The additional overhead of the PCS algorithm is 0(n 2 ). giving a loose
bound on the total average case complexity of 0(n 7) for 3D object recognition from 2D
images under the above assumptions.

6 Discussion

We have seen that tinder weak assumptions the Maximal Bounded Matching (MBM) proh-
lem is at most polynomially harder than the corresponding verification problem VBME.
and. conversely, that a polynomial time algorithm for MIBM implies the existence of a
polynomial time algorithm for the verification problem VBM.

There are three important properties of the recognition problem as defined above that
make it possible to find tractable algorithms to solve it:

1. The bounded error model makes the problem discrete.

2. The "quality measure" (size of a matching) is invariant under permutations of image
or model features within a matching.

3. Transformation space has a fixed, bounded dimensionality, and error bounds on
image or model features induce subsets in tranformation space that have a simple
structure.

All three of these properties are needed. For example, for a quality measure whose
dependence on the matching itself is complicated, there is obviously no reason to expect
polynomial time performance of a recognition algorithm: as we have observed already
above, even given a single transformation that aligns n image and model points, the
number of possible matchings that are geometrically consistent with the transformation
can be as large as n!. and a general quality measure could assign arbitrary values to each
of the possible matchings. Or. if we do not fix the (limensionality of transformation space
(as in recognition-with-parts problems, where the number of possible parts is unlimited).
a small number of location constraints can give rise to a large number of distinct and
geometrically feasible matchings.
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These properties of" the recognition problem have also been taken advantage of in the
transformation space sweep (TSS) algorithms for recognition described by Cass. 1990.
An important difference between such algorithms and the correspondence based algorithm
presented here is that the partition of transformation space used in the TSS algorithm.
the arrangement induced by considering all location constraints simultaneously, is finer
than actually needed for finding a maximal matching.

For example. each individual location constraint may give rise to a number of disconnected
sets in transformation space (as it does in the case of 3D recognition under rigid trans-
formations). A straightforward application of the TSS algorithm has to enumerate and
test separately each of the disconnected components of such sets. In contrast. the PCS
algorithm only relies on the existence of a verification algorithm to determine whether the
intersection of sets of transformation space given as sets of pairings are non-empty: the
topological properties of the sets of feasible transformations involved do not matter (and
sets with complicated topology can still be comparatively easy to test for intersection
with one another).

Another important distinction between the PCS algorithm and transformation space
sweep algorithms is that PCS makes direct use of combinatorial constraints. This means
that the PCS algorithm only computes a subset of those representatives that are actually
needed for finding a maximal matching.

When compared with previous complexity results for correspondence search techniques
in vision, the existence of the PCS algorithm demonstrates that the absence of unique
feature labels and the presence of clutter and occlusions in visual recognition does not
necessarily lead to an exponential behavior for correspondence search algorithms as has
been conjectured by Grimson, 1989.

Another important difference between correspondence search algorithms as described by
Grimson and Lozano-Perez, 1983, and the algorithm described in this paper is that their
algorithm has expected polynomial time behavior only if a match is known to exist in
between the image and the model; the time required to determine absence of a sufficiently
large match between image and model for the unpruned algorithm requires exponential
time even in the expected case. The PCS algorithm described in this paper has worst
case (and. hence, expected) polynomial time complexity in both cases.

The pruning method employed by PCS is a relatively low-cost scheme for pruning a
depth-first tree search for a maximal matching; for convex polygonal location constraints.
in the worst case. it will rin O(rnn) (where m is the number of model points and n is
the number ot image points) slower than any equivalent correspondence based algorithm
without the pruning step. In practice. we find that the pruning step actually improves
the overall performance of the algorithm in the case of moderate or large error bounds.
since it avoids re-exploration of transformations that have already been tested: existing.
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incompletely pruned algorithms will explore too many search nodes when error L 1n s

are large because of the combinatorial explosion of the number of geometrically feasihle
matchings.

Existing heuristics can be incorporated into the PCS algorithm to improve its performance
while still guaranteeing worst-case polynomial complexity. In particular. the techniique 4
Grimson and Lozano-Perez. 1983. uses a test for pairwise consistency to exclude impossihle
matchings quickly, and the same technique can be incorporated into the pruned algorit hill
described in this paper. Furthermore. all the branches at a node in the search tree ,'call
be explored in parallel, making the algorithm attractive for a parallel implenlentatiuli.

For the verification step. linear programming methods are particularly ,lesirablo.
they are provably efficient. and good implementations exist. If the non-linearities in the
verification step are of a simple enough form and fixed in number (as. for example. in the
recognition of rigid 3D objects from 2D data), efficient verification algorithms may -uil
be formulated. as described above.

Acknowledgements

The author would like to thank Tao D. Alter. Todd Cass. Eric Grimson. Leonidas (libas.
Robert S. Thau. Tomaso Poggio. and Shimon Ullman for numerous discussions abott
recognition. and their suggestions and comments on the paper.

References

Alt H.. Mehlhorn K.. Wagener H.. WelzI E.. 1988, Congruence. Similarity. and Symmetries
of Geometric Objects.. Discrete and Computational Geometry.

Baird H. S.. 198.5. Model-Based Image Matching Using Location. MIT Press. Cambridge.
MA.

Breuel T. M., 1989. Adaptive Model Base Indexing, In Proceedings: Image Understaodtiq
Workshop, pages 805-814. Los Angeles. CA, Morgan Kaufmann. San Mateo. CA.

Breuel T. M.. 1990. Indexing for Visual Recognition from a Large Model Base. A.I. Mlenlio
No. 1108. Artificial Intelligence Laboratory. Massachusetts Institute of Technology.

C(ass T. A.. 1988. Robust Parallel Computation of 2D Model-Based Recognition. IlII
Procefdinys Imagf Und ,'standiny Workshop. Boston. MA. Morgan and Kaufman. Sal
Mateo. CA.

S2



Cass T. .1 99). Featutre Matching for Objec,(t Localization inthe Presence -)t 1i ner-

taintv. A.I. Memo No. 1133. A-rtificial Intelligence Laboratorv. Mlassachuset ts Inst it ute (it
Technologyv.

Edelsbrunner H.. 198ST. :llyoi'ithis in Conibinatorial GtoInt tr-y. Springer Verlag.

CGrimson "W. E. L., Huttenlochier D. P.. 1989. On the Verification of Hypothesized \Iatche-

in Model-Based Recognition. A.l. Memo 1110. Artificial Intelligence Laboratory. Mas-

sachusetts Institute of Technology.

Crimson W. E. L.. Lozano-Perez T.. 1983. Model-Based Recognition and Localization

From Sparse Range or Tact ile Data. Technical Report A.l. .. \emo 738. MIT.

CGrimson W. E. L.. 1988. The Combinatorics of Object Recognition in Cluttered Enivironi-

ments using Constrained Search. Technical Report A.l. Memo 1019. Artificial Intelligen~ce

Laboratory. Massachusetts Institute of Technology.

CGrirnson kV. E. L.. 19S89. The Combinatorics of Heuristic Search Termination for Object

Recognition in Cluttered Environments.. ... Memno No. 1111. Artificial Intelligence
Laboratory. MassachUSetts Institute of Teclivology.

!Khachian L. G.. 1979. A Polyniomial Algorithm for Linear Programming (translatioll).
Sotvide Math Doklady. 20.

Megiddo N.. 1984. Linear Programming in Linear Trime when the Dimension is Fixed. .1.
.Assoc. Comnput. Mach. (USA). :31(1).

Norton .1. P.. 1986. An Introduction to Identification. Wiley.

Papadmritriou C. H.. Steiglitz K.. 1982. Combinatorial Optimization. Prentice Hall.

Rees .J. .Clinger W.. 198S6. Revised' Report on tle Algorithmic Language Scheme.
A CM Siyplan Votict's. 21(12).

Ullman S.. Basri R.. 1989. Recognition by Linear C'ombinations of MVodels. . Memo

No. 11.52. Artificial Intelligence Laboratory. \lass -chusetts Institute of Technology.

23


